If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+560X-5400=0
a = 1; b = 560; c = -5400;
Δ = b2-4ac
Δ = 5602-4·1·(-5400)
Δ = 335200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{335200}=\sqrt{400*838}=\sqrt{400}*\sqrt{838}=20\sqrt{838}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(560)-20\sqrt{838}}{2*1}=\frac{-560-20\sqrt{838}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(560)+20\sqrt{838}}{2*1}=\frac{-560+20\sqrt{838}}{2} $
| 9x-1=12x-22 | | 2x^2+1120x-10800=0 | | 2x−1=3x+8 | | 2-9=z+4 | | y^=11y-28 | | 9+2x=5x-x | | –2·(3x–9)=–6x+18 | | 196=4(4e+5) | | m+2=127 | | -10(x+3)=55 | | m2=127 | | 7x-4(x-4)+20=8 | | 2(2x+3)=3(x-2) | | 6(11-5y)+2y=10 | | 6-8(2x-1)+7x=6x-5(4-3x)+4 | | -14=x4 | | -6=-k | | -q=0 | | x+1/5-x-1/6=2 | | 9b2=16 | | X2+13x-240=0 | | 10y-27=27 | | 19y=18y+54 | | 7x+10=-40+2x | | 3x+11+x=-7 | | xx3+9=7 | | 6,5x+500=8x | | 2x+920=8x | | 36=9x+5 | | 2+3x+9=20 | | 4-2x+3=-9 | | 18+12=5x |